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Abstract. A peneralization of the spin-spiral model developed previousty to interpret non-
spin-polarized photoemission data on ferromagnetic metals to the spin-polarized case is applied
to measurements on nickel by Kimper et al. This method is easy to use and in contrast to
the cembersome randor-cluster model leads to meaningful results for the magnetic shot-tange
order ranging from 20 A to 60 A close to T

1. Introduction

One of the still vnresolved problems in the theory of ferromagnetic metals is the
characterization of the magnetic excitations at finite temperatures. This includes the well
known problems of calculating the Curie temperature and of determining the amount of
short-range-order above it. Because the interpretation of neutron-scattering data has been
subject to controversy [1-12] angle-resolved ultraviolet photoemission spectroscopy has
served as a prominent fool in investigating this problem. Due to the indirect nature of
this probe-—it basically determines the one-electron states established by scattering off the
magnetic excitations—a fair amount of theoretical interpretation is necessary in order to draw
conclusions from measured spectra. Particularly well known are the works of Korenman
and Prange [20, 21, 14], Usami and Moriya {16] and Staunton et al [19]. Unfortunately
they apply only to the limiting cases of massive and vanishing short-range-order. Therefore
attempts were made to find models valid for the continuous range of possible short-range-
order, viz. the spin-spiral model [22, 24] and the random-cluster approach [22, 23].
The random-cluster approach is accurate but numerically cumbersome and does not lead
to an analytic lineshape that might be used in fitting procedures {as is usually done in
interpreting spectra) whereas the spin-spiral model is physically transparent and leads to
analytic lineshapes but is overly simplistic. Initially photoemission spectroscopy was done
above T, and without spin analysis [14, 26, 27, 28], but the unpolarized data did not resolve
all issues, particuiarly in the case of nickel, so a number of spin-polarized measurements
(below T, of course} were undertaken [18, 17, 13].

The aim of this article is 1o generalize the spin-spiral model, which in its original form
is unsuitable for the polarized case, to spin-polarized measurements and to demonstrate how
simple its application is by using it to interpret the experiments on Ni(111) by Kdamper et af
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{13], which are particularly suitable for this purpose because they have also been interpreted
by the random-cluster technique [23].

In section 2 the method is presented with sufficient detail that prospective users can put
it to immediate use. Section 3 describes the application to the nickel experiments, i.e. the

detailed fit and the discussion of the results.
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Figure 1. An electron wavefunction, where the direction of the electron spin varies when one
progresses in physical space in a direction called the ‘spiral axis® by turning sniformly in a
plane perpendicular to the spiral axis, is called 2 spin spiral. The period of the tumn is given by
2n /g where g is the ‘wavevector” of the spiral.

2. A description of the model

In the spin-spiral approach [22] the magnetic structure is modelled as a kind of generalized
mean field: there is an effective magnetic field leading to an exchange splitting A in the
ground state, which has constant magnitude but varies in direction in the following way
{figure 1) by moving along a given direction in the crystal (termed the spiral axis) the
direction of the field rotates by an angle ¢ = g¢r in the plane perpendicular to the spiral
axis, where r is the distance travelled and g characterizes the amount of torsion, i.e. how
fast the direction of the magnetic field turns, Because translation invariance is broken
the momentum %4 is no longer a good quantum number. What is seen in photoemission
is the projection of the eigenfunctions onto the Bloch states obtained for A = 0. The
spectral function for given momentum % that results from this projection has four peaks per
paramagnetic band £; (that obtained for A = Q) at the energies

Ekkq T &k
2

o= (1+(522))

(figure 2, see [22] for details). Figure 3 shows lineshapes for a simple tight-binding band
g =wcosk for w/A =1, k= 0and n/2 and various values of g, where some Lorentzian

1
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with weights
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broadening has been added to simulate the effects of unavoidable experimental (and many-
body) broadening. Although there are four peaks in general they are symmetric for k = w/2
and twofold degenerate for k = 0. For k = x/2 the two ferromagnetic peaks separated
by A split into two peaks each, which move apart with increasing disorder (increasing gq),
with the outward-moving peaks rapidly losing weight and the approaching peaks becoming
more intense, leading to a lineshape where one sees two ferromagnetic peaks that broaden,
then move together and merge to a central peak that becomes increasingly narrower. In
the & = O case, in contrast, there are two peaks only: one moving inward with its weight
increasing, the other one moving outward and dying out, so in the lineshape one sees two
peaks at first with one of them becoming imperceptible after a while. No narrowing of the
remaining line is to be expected.

In order to calculate spin-resolved spectra we start by decomposing the eigenfunction
of a spiral configuration into its spin components paraliel or antiparallel relative to the
local direction of magnetization defined by the spiral. Contrary to what one may expect the
electrons scattered by the spin spiral by no means have their spins aligned with the potential.
They have a form of ‘spin inertia,” which keeps them from fully following the turn of the
magnetization direction: in moving from one site to the next they respond to the change in
magnetization, which exerts a torque, by precessing around the new direction. The larger
the tilt 4 is, the larger is the opening angle € of the precession cone (figure 4). For an
electron with a definite spin state in a direction on the cone the respective probabilities
for measuring up or down spin with reference to the direction of the magnetizing field
perpendicular to the spiral axis are

pr = cos?(m/2 — 8)/2 =(14+sind)/2 (2a)

p, = sin’(m/2 —8)/2 = (1 —sing)/2 (2b)
or

Pe = ({1 +osin@)/2 = (1420 sin(@/2) cos(@/2))/2. (2¢)

Note that one cannot use plain trigonometry here because there are only two states to
project to; rather one has to take—as is familiar in the spin case—#half the angles expected
from naive trigonometry.

This spin decomposition in the local frame of reference (where ‘up’ is always in the
direction of the spiral magnetization) now has to be related to the decomposition in the
laboratory frame of reference. The basic picture used for that purpose is derived from
local-band theory [29, 30, where it is assumed that there is enough magpetic short-range
order to define domains with more or less homogeneous magnetization large enough to
have a band structure. These domains then act thermodynamically like macrospins in an
effective Heisenberg Hamiltonian. The model we use here is somewhat different insofar as
we do not take the magnetization in a domain to be absolutely homopeneous but somewhat
disordered, i.e. it can be described by sections of spin spirals or incomplete spirais (a spiral
of infinite length has magnetization zero).

In setting up the lineshape in the laboratory system one consequently has to use

LE(EY = (1 + om{T)Lo(E) + (1 — om(T)Lo(E) 3
because if L,(E} denotes the lineshape of a domain with its macrospin pointing in
the direction of the net magnetization one finds domains with spins parailel to the net
magnetization with probability 1+om(T) and those antiparallel with probability 1 —om(T),
where m(T) = M(T)/M(Q) is the relative magnetization. L,{E) of course has to
include the precession effect mentioned above because the field within the domain is not
homogeneous but spiral like, Equation (2) cannot be used directly, however, because the



3612

A Ziegler and R Béttner

0] wix)
1 : -~
-1 +1 X = E-Eli
A/?
@ wix)
| : -
- +1 Eogy
A2

Figure 2. (a) Irrespective of how large the disorder parameter g is the weights w; and wye (for
the unpolarized and polarized cases respectively) do not depend on ¢ directly but only on the
energy x = (E — &.)/(A/2). (b} Spectral lines (without expertmental broadening) for k = /2
and weak disorder g. (¢) As (b) but with strong disorder ¢.

projection cnto a definite wavevector & already leads to different weights for opposite spins
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Figure 3. Spin-summed (full curves) and majority-spin (dotted curves) photoemission lineshapes
for varions turn angles of the magnetization from one lattice site to its nearest neighbour for
k =0 and k = 7r/2 including experimental broadening,

in the following way: the (spin-summed) weights of the electron states given above are
related to the angle 8 the cone forms with the spiral axis by w = cos? 8/2 where @ is given
by

tan 6/2 = (E — &)/ (A/2)

(see [22]). The four energies in the lineshape fall into two pairs, where each pair consists
of electron states with angles # = & and 8 = — 4, i.e. exactly opposite spins, and whose
energies consequently lie on gpposite sides of the (E - £,)/(A /2)-axis. This leads to

Lo (E) = N~ (w(E1)p(§)8(E — E1) + w(Er) p—o(8)8(E — E»)) {4)
where

w(E;) = cos*§/2

w(E;) = sinZ8/2
where use has been made of the relation

PU(JT - 5) = Pwo(é)'
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Figure 4. The spin vectors of electrons scattered by a spin spiral do not point in the direction
of the spiral but form a precession cone with opening angle /2 — 8. The figure shows the
precession cone in a system of reference where the twist of the spiral has been undone, ie.
where the spiral acts like a homogeneous field.

The normalization factor
N = w(E)ps + w(E2)p-s = (1 + §5in26)/2 (5)

was introduced to guarantee that the total weight w, of L, (E)} is equal to -;-
This expression is somewhat cambersome for numerical handling and may be substituted
for without much loss in accuracy by replacing

Wiy = 3)2-"—(1 + 20/ (1 — w))) (6)
with

Wi = %(1 + o 4(1 — w)?) for wy >

[ 3] Lol

Wiy = %(1 £odw(l —w))  forw <

wa[—

where the positive sign is valid for positive values and the negative sign for negative values
of (E — £,)/(A /2). This weight function is plotted in figure 2. The spin-resolved lineshapes
are given in figure 3 (note that these curves function is plotted in figure 2. The spin-resolved
lineshapes are given in figure 3 (note that these curves include the depolarization part onty,
not the weighting by 1 4+ om(T)). One sees that a line moving inward basically keeps its
weight with respect to the opposite spin direction. Thus for k = 0 where there is relatively
little movement there is a tendency for two pure peaks in the spin-resolved specira whereas
for k = 7 /2 with its rapidly moving lines the spin-resolved spectra contain peaks that have
a secondary maximum. For comparison with experiment one has to include the weighting
by 1 + om(T) as well, leading to equation (3). An example is given in the next section.

3. Application to spin-resolved spectra from Ni(111)

In this section the method introduced in the previous section is applied to measurements by
Kamper et al [13] on nickel along the A-line in the Brillouin zone (see figure 5). They took
spin-polarized spectra at three different points for a range of temperatures between room
temperature and T.. These experiments were inspired by corresponding measurements in
iron [18, 28] that had shown that the spectra may behave quite differently as a function
of temperature at different points in the Brillonin zone. Earlier measurements in nickel
had concentrated on the S-line in the vicinity of the X-point, so it was desirable to look
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at a different part of the Brillouin zone to see whether there is a similar variation in the
temperature-dependent spectra. In contrast to the X measurements non-spin-resolved spectra
are not very meaningful because of the significantly larger broadening. Although Kémper
¢t al found quite some variation even among the three points along the A-line, they found
it difficult to interpret the spectra in terms of the amount of short-range order present.
Gollisch and Feder [23], using the random-cluster model, were able to repraduce the spectra
but because of the large broadening their lineshapes are quite insensitive to the amount of
short-range order used in the calculation, so no conclusions could be drawn.
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Figure 5. The band structure of Ni along the I'-L-line indicating the points of measurement
(from [13]).

In our approach the lineshapes were fitted by an equation of the form

4
= BUE—Er)y—1 . 1 »n_
I(E} = Iyc + So(e ) ; w1+ om) s
where Ipg is the background intensity, §, a spin-dependent scaling factor and m(T) the
relative magnetization. E; are the four energies per band given above, w;, the corresponding
weights and p; a damping factor. It is important to note that the w, and E, are not
independent fitting factors but are determined by the single parameter g, where the g; used
in the expression for the E; was fitted to the actual band in figure 5. A typical fit is shown
in figure 6,

In contrast to [23] it is possible by our method to derive meaningful values for the short-
range-order parameter g (figure 7). As can be seen the disorder increases with temperature,
but it is not obvious whether or at what value it saturates. More interestingly the disorder in
this interpretation is nor the same for the three points in the Brillouin zone, as one expects
it to be, larger values being obtained the closer one is to the L-point. The reason for this
behaviour is not clear, although it should be mentioned that it has also been seen in the
spin-spiral interpretation of non-spin-resolved spectra taken at different points along the
S-line [26].
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Figure 6. An example of a fitted lineshape: the circles are the measured data, the lines are

obtained by the fit.
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Figure 7. The tilt parameter ¢ = A~!, where X is a length characterizing the magnetic short-
range order, plotted as a function of temperature for the three points in the Brillouin zone given
in figure 5. Triangles denote the 21.2 ¢V measurements, circles and squares those for 16.85 eV
and 11.83 eV respectively.

In conclusion we have shown that the spin-spiral method for inferpreting photoemission
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spectra can be generalized to the spin-polarized case and also by applying it to a concrete
experiment, that it is both easier to handle and leads to more definite results than the
random-cluster model.
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